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Introduction to manipulator kinematics
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Robotic Manipulators
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 a robotic manipulator is a kinematic chain

 i.e. an assembly of pairs of rigid bodies that can move respect to one 

another via a mechanical constraint

 the rigid bodies are called links

 the mechanical constraints are called joints

Symbolic Representation of Manipulators



A150 Robotic Arm
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Joints
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 most manipulator joints are one of two types

1. revolute (or rotary)

 like a hinge

 allows relative rotation about a fixed axis between two links

 axis of rotation is the z axis by convention

2. prismatic (or linear)

 like a piston

 allows relative translation along a fixed axis between two links

 axis of translation is the z axis by convention

 our convention: joint i connects link i – 1 to link i

 when joint i is actuated, link i moves



Joint Variables
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 revolute and prismatic joints are one degree of freedom 

(DOF) joints; thus, they can be described using a single 

numeric value called a joint variable

 qi : joint variable for joint i

1. revolute

 qi = qi : angle of rotation of link i relative to link i – 1

2. prismatic

 qi = di : displacement of link i relative to link i – 1



Revolute Joint Variable
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 revolute

 qi = qi : angle of rotation of link i relative to link i – 1

link i – 1

link i

qi



Prismatic Joint Variable
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 prismatic

 qi = di : displacement of link i relative to link i – 1

link i – 1 link i

di



Common Manipulator Arrangments
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 most industrial manipulators have six or fewer joints

 the first three joints are the arm

 the remaining joints are the wrist

 it is common to describe such manipulators using the joints of 

the arm

 R: revolute joint

 P: prismatic joint

Common Manipulator Arrangements



Articulated Manipulator
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 RRR (first three joints are all revolute)

 joint axes

 z0 : waist

 z1 : shoulder (perpendicular to z0)

 z2 : elbow (parallel to z1)

Common Manipulator Arrangements
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Spherical Manipulator
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 RRP

 Stanford arm 

 http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

Common Manipulator Arrangements
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SCARA Manipulator
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 RRP

 Selective Compliant Articulated Robot for Assembly 

 http://www.robots.epson.com/products/g-series.htm

Common Manipulator Arrangements
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Forward Kinematics
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 given the joint variables and dimensions of the links what is 

the position and orientation of the end effector?

Forward Kinematics
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Forward Kinematics
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 choose the base coordinate frame of the robot

 we want (x, y) to be expressed in this frame

Forward Kinematics
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Forward Kinematics
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 notice that link 1 moves in a circle centered on the base frame 

origin

Forward Kinematics
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Forward Kinematics
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 choose a coordinate frame with origin located on joint 2 with 

the same orientation as the base frame

Forward Kinematics
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Forward Kinematics
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 notice that link 2 moves in a circle centered on frame 1

Forward Kinematics
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Forward Kinematics
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 because the base frame and frame 1 have the same 

orientation, we can sum the coordinates to find the position 

of the end effector in the base frame

Forward Kinematics

q2

q1

a1

a2

x0

y0

( a1 cos q1 , a1 sin q1 )

q1

x1

y1

( a2 cos (q1 + q2),

a2 sin (q1 + q2) )

(a1 cos q1 + a2 cos (q1 + q2),

a1 sin q1 + a2 sin (q1 + q2) )



Forward Kinematics
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 we also want the orientation of frame 2 with respect to the 

base frame

 x2 and y2 expressed in terms

of x0 and y0

Forward Kinematics
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Forward Kinematics
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 without proof I claim:

Forward Kinematics
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Inverse Kinematics

1/17/201120

 given the position (and possibly

the orientation) of the end

effector, and the dimensions

of the links, what are the joint

variables?

Inverse Kinematics
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Inverse Kinematics
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 harder than forward kinematics because there is often more 

than one possible solution

Inverse Kinematics
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Inverse Kinematics
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law of cosines

Inverse Kinematics
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Inverse Kinematics
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We could take the inverse cosine, but this gives only one of the two solutions.



Inverse Kinematics
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which yields both solutions for q2 . In many programming languages you would use the
four quadrant inverse tangent function atan2

c2 = (x*x + y*y – a1*a1 – a2*a2) / (2*a1*a2);

s2 = sqrt(1 – c2*c2);

theta21 = atan2(s2, c2);

theta22 = atan2(-s2, c2);



Inverse Kinematics

1/17/201125

 Exercise for the student: show that

Inverse Kinematics



















 

221

2211

1
cos

sin
tantan

q

q
q

aa

a

x

y


